MA 114 MathExcel Worksheet E: Series Tests and Absolute/Conditional Convergence

- 1. State or define each of the following (with appropriate hypotheses):
 - (a) Test for Divergence
- (e) Limit Comparison Test(f) Absolute Convergence

- (b) Integral Test
- (c) Geometric Series

(g) Conditional Convergence

(d) Comparison Test

- (h) Alternating Series Test
- 2. For large n, rank each set of functions in increasing order. (For example, for large enough n, we can say $n^2 < n^3$). Explain how your results might be helpful in determining whether or not a series converges.
 - (a) $n!, e^n$, and $\cos(n\pi)$
 - (b) $(n-1)^3$, $\ln(n)$, and 10^n
 - (c) n, n^{10} , and $n^{0.1}$
- 3. Ron hopes to investigate the convergence of $\sum_{n=1}^{\infty} \frac{e^{-n}}{n}$ by comparing it with $\sum_{n=1}^{\infty} \frac{1}{n}$. Hermione suggests that this might be a bad idea. Why is Hermione right (this time)?
- 4. Consider the sum $\frac{1}{2} \frac{1}{3} + \frac{1}{2^2} \frac{1}{3^2} + \frac{1}{2^3} \frac{1}{3^3} + \cdots$
 - (a) Can you apply the Alternating Series Test to this series? Why or why not?
 - (b) Show that this series converges.
- 5. Consider the series

$$\sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{n^2}{n^3 + 1}$$

- (a) For $b_n = \frac{n^2}{n^3+1}$, show that $b_{n+1} \leq b_n$ for all n and $\lim_{n\to\infty} b_n = 0$.
- (b) Does the series congverge or diverge?
- 6. For the following a_n , determine first if $\{a_n\}$ converges, then determine if $\sum_{n=1}^{\infty} a_n$ converges.
 - (a) $a_n = \frac{2}{n}$. (b) $a_n = \frac{5n^4 + 17}{n^{13} - 6}$. (c) $a_n = 18$.

7. Determine whether the following series converge absolutely, conditionally or not at all.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{1/3}}$
(c) $\sum_{n=2}^{\infty} \frac{\cos(\pi n)}{\ln(n)}$
(d) $\frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \frac{1}{4} - \frac{1}{4} + \cdots$
(e) $2 - 2 + 3 - 3 + 4 - 4 + \cdots$

8. Using the method of your choice, determine whether the following series converge or diverge.

(a)
$$\sum_{n=0}^{\infty} \pi^{-n}$$
 (d) $\sum_{n=1}^{\infty} (-1)^n n^2 e^{-n^3/3}$ (h) $\sum_{n=1}^{\infty} \frac{10^n}{2^{n^2}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{3n^4 + 12n}$ (e) $\sum_{n=1}^{\infty} \frac{n^2}{n^4 - 1}$ (i) $\sum_{n=0}^{\infty} \frac{(-1)^n}{5n + 1}$
(c) $\sum_{n=1}^{\infty} \frac{3^n + (-2)^n}{7^n}$ (g) $\sum_{n=1}^{\infty} \frac{1}{n^n}$ (j) $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$